C-Reactive Protein Promotes Diabetic Kidney Disease in db/db Mice via the CD32b-Smad3-mTOR signaling Pathway
نویسندگان
چکیده
C-reactive protein (CRP) is associated with progressive diabetic nephropathy in patients with type-2 diabetes (T2DN). However, role of CRP in T2DN remains unclear. We report here that CRP is pathogenic in T2DN in db/db mice that express human CRP (CRPtg-db/db). Compared to the littermate db/db mice, CRPtg-db/db developed more severe T2DN, showing higher levels of fasting blood glucose and microalbuminuria and more progressive renal inflammation and fibrosis. Enhanced T2DN in CRPtg-db/db mice were associated with over-activation of CRP-CD32b, NF-κB, TGF-β/Smad3, and mTOR signaling. Further studies in vitro defined that CRP activated Smad3 directly at 15 mins via the CD32b- ERK/p38 MAP kinase crosstalk pathway and indirectly at 24 hours through a TGF-β1-dependent mechanism. Importantly, CRP also activated mTOR signaling at 30 mins via a Smad3-dependent mechanism as Smad3 bound mTOR physically and CRP-induced mTOR signaling was abolished by a neutralizing CD32b antibody and a specific Smad3 inhibitor. Finally, we also found that CRP induced renal fibrosis through a CD32b-Smad3-mTOR pathway because blocking mTOR signaling with rapamycin inhibited CRP-induced CTGF and collagen I expression. Thus, CRP is pathogenic in T2DN. CRP may promote CD32b- NF-κB signaling to mediate renal inflammation; whereas, CRP may enhance renal fibrosis in T2DN via CD32b-Smad3-mTOR signaling.
منابع مشابه
Astragaloside IV ameliorates renal injury in db/db mice
Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current...
متن کاملN-acetyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice.
We have previously reported that N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), which is a tetrapeptide hydrolyzed by ACE, inhibits the transforming growth factor-beta (TGF-beta)-induced expression of extracellular matrix proteins via inhibition of the Smad signaling in human mesangial cells. To test in vivo the antifibrotic efficacy of Ac-SDKP, we examined whether long-term Ac-SDKP treatment...
متن کاملSmad3 Signaling Promotes Fibrosis While Preserving Cardiac and Aortic Geometry in Obese Diabetic Mice.
BACKGROUND Heart failure in diabetics is associated with cardiac hypertrophy, fibrosis and diastolic dysfunction. Activation of transforming growth factor-β/Smad3 signaling in the diabetic myocardium may mediate fibrosis and diastolic heart failure, while preserving matrix homeostasis. We hypothesized that Smad3 may play a key role in the pathogenesis of cardiovascular remodeling associated wit...
متن کاملGlycyrrhizic Acid Prevents Diabetic Nephropathy by Activating AMPK/SIRT1/PGC-1α Signaling in db/db Mice
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Glycyrrhizic acid (GA) is an effective inhibitor of reactive oxygen species (ROS) production. We investigated the role of GA in the progression of renal injury in DN. Albumin (Alb)/creatinine (crea) levels were significantly lower, and renal histopathology was attenuated in the diabetic db/db mice that were treated wi...
متن کاملRenoprotective Effects of Atorvastatin in Diabetic Mice: Downregulation of RhoA and Upregulation of Akt/GSK3
Potential benefits of statins in the treatment of chronic kidney disease beyond lipid-lowering effects have been described. However, molecular mechanisms involved in renoprotective actions of statins have not been fully elucidated. We questioned whether statins influence development of diabetic nephropathy through reactive oxygen species, RhoA and Akt/GSK3 pathway, known to be important in rena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016